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Abstract

Arrangement of lines is the subdivision of a plane by a finite set of lines. Arrangement
is an important structure which can aid in solving many problems in theoretical computer
science. Arrangement of lines also has important application in robot motion planning and
computer graphics. In this paper, we discuss about combinatorics of arrangement, substructures
of arrangement and algorithm to find an arrangement.
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1 Introduction

An Arrangement of lines, A(L) is the division of a plane by a finite set of lines, L. Arrangements1

occur frequently in many computational geometry problems. Many of the theoretical computer
science problems have arrangement underlying their problem specification. Arrangement has im-
portant application in robot motion planning through visibility graph [9, 11]. It has also important
application in computer graphics specially in hidden surface removal [10]. Arrangement of more
complex geometric elements such as arrangement of curves and surfaces is also important as it has
application in molecular modeling [3].

Arrangement has been studied since late 60′s and has a rich history of work. Initial idea of
arrangements has been conceived by Grünbaum [7, 6, 5]. Later, Edelsbrunner et. al. introduced
more complex arrangement of hyperplanes [3]. He also summarized the works on arrangements up
to 1987 [2]. A comprehensive discussion on arrangement can be found in [8]. In this paper, we
mainly summarize the chapter by Halperin in [8]. However discussion in [8] is on general dimension
arrangement i. e. arrangement of hyperplanes whereas we concentrate on arrangement of lines
here. In section 2, we discuss about some basic terms related to lines and arrangements. Section 3
deals with the complexity of an arrangement. Some subtle and critical substructures are discussed
in section 4. In section 5, we discuss algorithms to determine arrangement. Finally, section 6
concludes this paper.

1In this paper, we use arrangement to mean arrangement of lines unless explicitly specified otherwise.
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2 Preliminaries

A line on a plane is an infinite set of points which are equidistant from two fixed points. Thus,
a line extends to infinity. Let, L be a set of n lines on a plane. The set of lines L, will split the
plane into some convex regions with some edges and vertices. This division is called arrangement,
A(L), induced by a set of lines L. A vertex of an arrangement, A(L), is an intersection point of
two lines l1 and l2, where l1, l2 ∈ L. An edge of an arrangement, A(L), is the line segment between
two vertices v1 and v2 which contains no other vertex, where v1, v2 are two vertices of arrangement,
A(L). Moreover, a line segment that extends from a vertex v1 to infinity and does not contain any
other vertex except v1 is also called an edge. Such an edge is called unbounded edge. Thus, an
edge whose both endpoints are vertices of arrangement, A(L), is called a bounded edge. A face of
an arrangement, A(L), is a maximal region created by the set of lines, L, which does not contain
any vertex or edge of arrangement, A(L), in its interior. Note that similar to edges, faces can also
be unbounded. A face f , of arrangement A(L), is called bounded face if its boundary is a closed
polygon formed by the edges of A(L). The union of bounded faces in an arrangement, A(L), is
called the envelope of arrangement, A(L). Complexity of the envelope of an arrangement is the
number of edges in the envelope. Figure 1 is an arrangement of 6 lines with 13 vertices, 32 edges
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Figure 1: An arrangement of lines

and 20 faces, where v is a vertex, eb is a bounded edge, eu is an unbounded edge, fb is an bounded
face and fu is an unbounded face.

An arrangement, A(L) is called simple if its line set, L, has two properties,

(i) Every two lines of L meet at exactly one point.

(ii) No three lines of L meet at a single point.

Figure 2(a) depicts a simple arrangement of 5 lines and 2(b) shows a nonsimple arrangement of
4 lines. An edge, e is said to incident to a face f , if e is part of the boundary of the face, f . It
should be noted that a single edge will be incident to exactly two faces. The number of edges that
are incident to a face, f , is called the complexity of face, f . Thus, if F be the set of faces in an
arrangement, A(L), ne is the number of edges in arrangement, A(L), and C(f) be the complexity
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Figure 2: (a)A simple arrangement of 5 lines and (b) An arrangement of 4 lines that is not simple.

of face f , then ∑

f ∈ F
C(f) = 2× ne.

If A(L) is an arrangement induced by a set of lines L, then The zone of a line l, in A(L), is the set
of faces intersected by l and is denoted by ZA(l) or simply Z(l) when arrangement is clear from
the context. The complexity of the zone ZA(l), is the total complexity of the faces in that zone,
ZA(l). So, C(f) be the complexity of face f, complexity of ZA(l) =

∑
f∈ZA(l) C(f).

3 Complexity of Arrangements

Presence of some lines on a plane induces some vertices, edges and faces. The complexity of an
arrangement is expressed by three numbers. The numbers that are used to express the complexity
of an arrangement are,

• number of vertices,

• number of edges and

• number of faces.

It is easier to measure the complexity of a simple arrangement. So, we concentrate on complexity
of a simple arrangement first. To measure the complexity of a simple arrangement, we have the
following theorem,

Theorem 3.1 If L is a set of n lines and A(L) is a simple arrangement induced by L, then

(i) the number of vertices in A(L) is n(n−1)
2 ,

(ii) the number of edges in A(L) is n2 and

(iii) the number of faces in A(L) is n2

2 + n
2 + 1.

3



Proof (i) The number of vertices in an arrangement is simply the number of intersection points of
pairs of lines in L. Now, in a simple arrangement every pair of lines in L meet at a unique point.
Hence, The number of vertices in a simple arrangement is equal to the number of pairs of lines in
L which is (n

2 ). Thus number of vertices in a simple arrangement is (n2 ) = n(n−1)
2 .

(ii) We use induction method to establish the number of edges in a simple arrangement. First,
when n = 1, there is only one line in the arrangement and thus only 1 = 12 edge.

Now, assume in a simple arrangement of n − 1 lines, there are (n − 1)2 edges. When we add
the nth line, it will intersect previous all n− 1 edges creating n− 1 more edges. Moreover, the nth
line itself will create n new edges as it has intersected at n− 1 points. Thus,

total number of edges = (n− 1)2 + (n− 1) + n = n2 − 2n + 1 + 2n− 1 = n2.

(iii) Induction method can be used to determine the number of faces in a simple arrangement.
When n = 1, The face in the arrangement is 2 as there is a face in either side of the line. Again,
n2

2 + n
2 + 1 = 1

2 + 1
2 + 1 = 2. Thus number of faces is n2

2 + n
2 + 1 when n = 1.

Now assume there are (n−1)2

2 + n−1
2 + 1 faces in a simple arrangement of n− 1 lines. When the

nth line is added, it will be divided in to n edges and each of these edges will split different faces.
So, n new faces will be added. So,

total number of faces = (
(n− 1)2

2
+

n− 1
2

+ 1) + n =
n2

2
+

n

2
+ 1

This concludes proof of theorem 3.1.

Number of vertices in a simple arrangement is obviously higher than that of nonsimple arrange-
ment when number of lines in the arrangements is same. This is because, in a simple arrangement,
every pairs of lines creates an unique intersection point which is not the case in a nonsimple arrange-
ment. So, Number of vertices in a nonsimple arrangement is lower than it’s simple counterpart.
Lower number of vertices leads to lower number of edges and faces. So, for general arrangements
we have the following corollary,

Corollary 3.2 If L is a set of lines and A(L) is the arrangement induced by L, then

(i) the number of vertices in A(L) is at most n(n−1)
2 ,

(ii) the number of edges in A(L) is at most n2 and

(iii) the number of faces in A(L) is at most n2

2 + n
2 + 1.

4 Substructures in Arrangements

A substructure of an arrangement is a portion of an arrangement that may be important in solving
a problem. Sometimes the total complexity of an arrangement does not needed to be handled,
rather a subset of an arrangement may be enough to solve a problem. In this section we discuss
about three important substructures of arrangements.
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4.1 Faces in an Arrangement

Faces alone do not sound much important. But, the implication of faces in arrangement is very
important. Complexity of faces dictates the strategy and runtime of many arrangement algorithms
that have significant impact in the applications where arrangement is applicable. Many properties,
such as convexity of faces in an arrangement, simplifies many analysis and strategy in solving
problems relating arrangements. Here we focus on two important properties of faces in arrangement
namely, convexity and complexity of faces.

Every faces in arrangement are convex. Although faces may be bounded or unbounded in
an arrangement there is no non-convex face in an arrangement. We can prove it using following
theorem,

Theorem 4.1 Every face f , in an arrangement A(L), induced by the set of lines L, is convex.

Proof For a contradiction, let f ′ is a non-convex face of A(L) and u, v be two points contained by
the face f ′, such that their connecting line uv is not totally contained by f ′. Then there is some
lines crossing the segment uv. Let, l be such a line as shown in figure 3. Then u and v are in

u
v

l

Figure 3: Two points in a non-convex face.

opposite side of line l. But being a line, l extends to infinity. So, there is no way for the two points
u,v, which are in opposite side of a line, to be in a single face. So, there is no non-convex face in
A(L).

The complexity of a face is the number of edges in the boundary of that face. Since every face
is convex, no line can create two edges of a single face. So, the complexity of a single face can be at
most n, in an arrangement A(L) which is induced by a set of n lines, L. Again, given n it is always
possible to build an n-gon which will ensure presence of a face with worst complexity. Figure 4
shows an arrangement of 5 lines where a 5-gon is present. So, the complexity of a single face is
O(n).

4.2 Zone of a Line

Zone of a line in an arrangement is important since many of the algorithms to build arrangements
depend on zone of lines. So, performance of that algorithms also is dictated by complexities of the
zones of lines. To measure the complexity of a zone, the following theorem is important, which is
widely known as zone theorem.
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Figure 4: An arrangement of 5 lines with a 5-gon.

Theorem 4.2 Let L be a set of n lines and A(L) be the arrangement induced by L. If l is another
arbitrary line and ZA(l) is the zone of line l, in the arrangement A(L), then the complexity of the
zone ZA(l), is O(n).

Proof We assume the arrangement is simple. Since we are proving upper bound assuming the
arrangement to be simple does no harm as we have already seen from section 3 that simple
arrangement contains most number of faces. We also assume that the line l is horizontal. If l

is not horizontal, the coordinate axis can be rotated to make it horizontal. we prove theorem 4.2
by induction.

When n = 1, number of lines is one. So, there are two faces and any new line can only intersect
these 2 = n + 1 faces. Now, we assume the hypothesis is true for an arrangement of n − 1 lines.
Since l is horizontal and we assumed a simple arrangement, no other line is horizontal. So, it is
possible to define all edges as left bounding or right bounding edges with respect to faces. An edge
e, is a left bounding edge of a face f , if e is incident to f and there is a horizontal line h which
intersect e at a point x, such that immediate right point of x is in f . Similarly a right bounding edge
can be defined. Now, we focus on proving the bound on left bounding edge to be ≤ 3n. Similar
bound on right bounding edges can be combined with that of left bounding edges to prove the
upper bound on zone complexity. Since we assumed our hypothesis is true for n− 1 lines, number
of left bounding edges in an arrangement of n−1 lines is ln−1 ≤ 3(n−1). Now to prove this bound
in an arrangement of n lines, we will remove one line from A(L) and show that adding back this
line will increase the number of left bounding edge by at most three.

Given A(L), an arrangement of n lines and another line l, we select a line, r ∈ L which intersects
l at the rightmost point among all lines in L. We need to prove that adding r back will not create
more than 3 new left bounding edges. Putting r back may increase the number of left bounding
edges in two ways, r itself may create new left bounding edges and r may intersect other left
bounding edges.

Figure 5 shows a condition created when r is put back onto the arrangement. We now show
that r it self may create at most one new left edge. Let u be the point where r first intersects with
any line above l and v be the point where r first meets with any line below l. Clearly, uv is a left
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Figure 5: The rightmost intersection line of l.

bounding edge of the unbounded face right to r. So, r it self creates one new left bounding edge.
Now, consider the region R (colored gray in figure 5), between r and p above u, this region cannot
be in the zone of line l in A(L). Since R is bounded on the left by r and on the right by p, there
is no way l can intersect R. Thus the portion of r above u cannot carate any left bounding edge.
Similar argument can show that the portion of r below v cannot form any left bounding edge. So,
r itself can create at most one new left bounding edge.

Now, we prove that r may increase the number of old left bounding edges by at most two. We
observe that r may increase the number of left bounding edge by intersecting an old left bounding
edge e, if e is an edge of the rightmost unbounded face of the zone of line l. The reason behind

m

e

r

l

Figure 6: No increase of left bounding edge.

that is if r splits any left bounding edge e (refer to figure 6), of a bounded face then there will be
at least one edge m that intersects r at a point right to the intersecting point of e and r. So, the
region bounded by r, e and m (colored gray in figure 6) cannot be in the zone of line l as it has
no way to incident to l. Thus r can only split an old left bounding edge e, to create two new left
bounding edge if e is a left bounding edge of the rightmost unbounded face in the zone of the line l.
Figure 7 shows that case where previous left bounding edge uw is split into two new left bounding
edges uv and vw, by r. According to theorem 4.1 every face of the arrangement is convex. So, the
rightmost unbounded face also is convex and being a straight line, r can intersect that face at at
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Figure 7: Increase of left bounding edge.

most two points. Thus r can split two old left bounding edges causing an increase of two in the
number of left bounding edges. So, total number of increase in left bounding edge number is three
as r itself can create one more left bounding edge. So, by induction method number left bounding
edges in an arrangement of n lines, ln ≤ 3n.

The number of right bounding edges can be bound to be 3n, similarly. Combining these two
bounds, we can say that the complexity of ZA(l) is indeed O(n).

4.3 Envelope of an Arrangement

Envelope of an arrangement is an important substructure of arrangements. Determining envelope
of an arrangement has application in linear programming. Moreover determining upper (lower)
envelope of an arrangement is equivalent to determining lower (upper) convex hull in dual space.
In this subsection, we document a lemma related to complexity of the envelope of an arrangement
due to J. Urrutia. We specify the lemma without proof. Proof of lemma 4.3 can be found in [4].

Lemma 4.3 Let A(L) be the arrangement induced by a set of n lines L, and P be the envelope of
A(L), then P contains at most 3.5n edges.

5 Algorithm to Construct an Arrangement

In this section, we focus on algorithmic approach to build an arrangement from the set of lines
that is inducing the arrangement. An important question comes in mind about what should be the
input and output of an algorithm that constructs an arrangement. The input is the set of lines. As
a line can be expressed using two numbers, n pairs of numbers suffice as input. Output is a little
bit tricky as it may be dependent on the problem that is solved by arrangement. Thus special data
structures are used to denote arrangement. So, we discuss about data structure that may be used
to store an arrangement.
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5.1 Data Structure for Arrangement

The choice of data structure is primarily dictated by the application that are being tackled using
arrangement. Here we discuss about widely used O(n2) data structure, Doubly-Connected Edge
List. In an arrangement every edge is incident to two faces. So, each edge is considered as two
half edges each one incident to one face. These two half edges are called twin to each other. Each
half edge is oriented in a direction so that if any one walks along a half edge the incident face is
at the left of the walker. The vertex at the start of the half edge, along the direction of that half
edge, is called the origin of that half edge. It should be noted that the destination of a half edge
is the origin of the twin half edge. Moreover every vertex and face has also one record in this data
structure. So, there are three types of records in doubly-connected edge list data structure,

• vertex: vertex record for the vertex v stores the coordinate of v. It also stores an arbitrary
half edge −→e whose origin is v.

• face: face record for a face f , stores two components named outercomponent and innercom-
ponent. Outercomponent is a half edge of the outer boundary of face f and innerboundary
is a half edge of the inner boundary of face f .

• half edge: Record for a half edge −→e stores origin, twin, incident face, next half edge and
previous half edge. Origin is a pointer to the record for the vertex which is the origin of −→e .
Twin is a pointer to the record of the twin half edge of −→e . Incident face stores a pointer to
the face record to which −→e is incident. Next half edge stores a pointer to the half edge that
comes after −→e while traversing boundary of incident face of −→e . Similarly previous face is
stored.

5.2 Incremental Algorithm to Build an Arrangement

In this subsection, we illustrate an incremental algorithm to build a doubly connected edge list of
an Arrangement. In this incremental algorithm, lines are added one by one and faces created by
lines added so far are split by the new line. A problem occurs relating unbounded face and initial
condition. There is no face initially. So, something special should be done. More over unbounded
faces are hard to split as they cannot be traversed fully. The problem is solved using a bounding
box that contains every vertices of the arrangement. Initially there is only one face bounded by
the bounding box. Details of the algorithm is described below.

Let, L be a set of n lines such that L = {l1, l2, . . . , ln}. A bounding box D(L), is calculated
from the whole set of lines, L. Let, Ai denotes the subdivision of the plane induced by bounding
box D(L), and part of A({l1, l2, . . . , li}) that is inside D(L). While adding line li, we must split the
faces of Ai−1 that are intersected by li. The splitting starts with determining the left most face
that is intersected by li. When the line line li enters into face f , half edges of the boundary of f is
traversed to determine the edge e where line li is leaving face f . Once leaving edge e is found, face
f is split into two face and half edge e is also split. Next intersecting face is founding twin of e as
next intersecting face is incident to twin of e.

Figure 8 shows splitting of face f by a line l. The entering edge is already split while handling
previous face. Now, we create one new record for face, create two new half edge record created by
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Figure 8: Splitting of a face.

l itself inside the face f . Finally, the edge e is split where l leaves the face. This splitting continues
until an unbounded face that is face outside the bounding box D(L) is reached. The algorithm can
be summarized as follows,

Algorithm BuildArrangement, given the line set L

input: a set of n lines, L

output: A doubly connected edge list representing arrangement induced by L, bounded by a box.

1: Compute a bounding box D(L) that contains all the vertices of the arrangement induced by L.
2: Build a doubly connected edge list recording vertices, edges and face created by D(L).
3: for i = 1 to n do
4: Find the left most edge −→e where line li intersects with Ai−1.
5: let f be face incident to −→e .
6: while f is inside the bounding box D(L) do
7: Split f.
8: f ← next intersected face by li.

9: end while
10: end for

The running time of this algorithm is O(n2). This can also be verified as, step 1 can be done
in O(n2) time by determining all intersection points from L and taking a box having lines through
the uppermost, leftmost, bottommost and rightmost points. Step 2 can be done in constant time.
Step 4 takes O(i) as left most line of the bounding box D(L), can be divided up to i pieces. Step
5 and 8 takes O(1) time. Step 7 depends on the complexity of face f , which we know to O(i)
from subsection 4.1. But from theorem 4.2, we know step 6 and 7 run in time O(i). So, total time
needed for steps 3-10,

∑n
i=1 O(i) = O(n2). Thus total running time of algorithm BuildArrangement

is O(n2) + O(1) + O(n2) = O(n2). More over the storage requirement of this algorithm is also
quadratic, as output size is it self quadratic implied by corollary 3.2. So we can state the following
theorem,
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Theorem 5.1 The doubly connected edge list for an arrangement induced by a set of n lines can
be built in O(n2) time and storage.

The proof of this theorem is obvious from above mentioned discussion. Since the output size itself
is quadratic this algorithm is quite efficient in terms of running time. However, Edelsbrunner and
Guibas have given an algorithm using topological sweep that works with linear storage maintaining
quadratic runtime [1].

6 Conclusion

In this paper, we presented comprehensive discussion on arrangement of lines that might be impor-
tant in the applications where arrangement is used to tackle critical problems. We have determined
the size and complexity of a simple arrangement of lines. From that we have also given an upper
bound on complexity of general arrangements.

Substructures of arrangements has many important implication on numerous problems. En-
velope of an arrangement is attracting researchers attention since its introduction. We have dis-
cussed about three substructures of arrangements. We have documented a proof of the widely
known theorem named zone theorem. We also have presented an incremental algorithm to build
the arrangement in a special type of data structure called doubly connected edge list. We also
discussed the basics of doubly connected edge list.

Arrangement can also be extended to higher dimensions like 3-dimension or d-dimension. Higher
dimensional arrangement like arrangement of planes, is more challenging and requires subtle geo-
metric understanding to deal with. Lack of Presence of simple algorithm to deal with higher
dimensional arrangement makes them excellent choice to work with.
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